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Modified Michaelis law in a two-state ratchet model for a molecular motor
as a function of diffusion constant
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We study transport properties and energetics of ratchets, which are driven by a chemical reaction between
two states with different diffusion constants. We find that velocity curves show very sensitive dependence on
the ratio of diffusion constants, whereas the rate of Adenosinetriphos@ie®e consumption curves depends
smoothly on it. Modified Michaelis-Menten law shows us that identical values of Michaelis-Menten constant
Ky can be obtained independently from both curves. We obtain force-velocity curves for different values of a
ratio of diffusion constants. We find that the Michaelis-Menten constant increases with the increasing external
load for the “active site” model where the ATP assisted transition occurs at the localized region near the
minimum of the ratchet potential, whereas it decreases with the increasing load for the “delocalized model.”
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. INTRODUCTION 0l ATP] o
VT Ky +[ATP]

One of the essential features of biological systems is that

they can transduce chemical energy into mechanical motio . . . .
and work on a molecule scale. Important examples ar(Bere[ATP] Is the concentration of ATRimay IS the velocity

. : : t saturating ATP, an&,, is mechanochemical Michaelis-
muscle contraction, transport of materials and vesicles, ce 9 M .
mobility, and cell mitosis. Recent studies have shown tha enten constan{12]. However recent experiment on a
o ' ingle kinesin motor revealed some puzzling results: In-
these motions and forces are generated on a molecular lev

b ins th dri by chemical . eased loads reduce the maximum velocity as expected, but
y motor proteins that are driven by chemical reactions Con;yiqe the apparent Michaelis-Menten constant by a factor of 4
suming ATP(Adenosinetriphosphaten a far from equilib-

: J AL when the external load increases five tirhk3)]. Lattanzi and
rium situation. _ ~_ Maritan provide a modified Michaelis-Menten law to explain
Linear motor proteins move along complex periodiCthe puzzling data within the framework of coarse grained
structures called filaments, which are obtained by the polywwo-state ratchet mode[d4].
merization of identical monomefactin filamentg or dimers In this paper, we generalize a model introduced by Lat-
(microtubules. An important feature is their polarity, which tanzi and Maritan and study force-velocity relations in a gen-
originates from the asymmetry of monomers forming a polaferal two-state ratchet model in which diffusion constants in
structure with two different ends denoted by “plus end” andeach of the two states are different. By obtaining the
“minus end.” So far three different families of motor pro- Michaelis-Menten curve for various values of the ratios of
teins have been identified: kinesins moving along microtu-diffusion constants, we find that an increase in Michaelis
bules are responsible for transport of organelles, myosingonstant for increased loads is a property of the two-state
moving along actin filaments are responsible for muscle conratchet model where ATP-hydrolysis transition occurs only in
traction, and dyneins are involved in cellular locomotion.an “active site” and explain the obtained data using the
Kinesins and myosins move toward the plus end, whereagiodified Michaelis-Menten law. We find that in the model
dyneins move toward the minus efit}2]. where the transitions are “delocalized,” the Michaelis-
Several models have been studied to explain how th&lenten constant decreases with increasing load. In Sec. I,
chemical energy of ATP is transduced into unidirectional mo{he two-state ratchet model will be introduced. Simulation
tion of motor proteing2—9. A thermal ratchet models is one results will be provided in Sec. Ill. We discuss our result in
of the extensively studied models explaining the motion ofth€ final section.
motor proteing4,5,10. In a thermal ratchet model a motor

protein diffuses as a Brownian particle in a several periodic, Il. TWO-STATE RATCHET MODEL
ratchetlike potential that is alternatively switched on and off
in a stochastic way. We now describe a two-state ratchet model for force gen-

The role of the external load in the kinetics of motor eration and motion of a liner motdE], in which ATP con-
proteins is of interesf11,12. With the development of an sumption triggers a conformational change between states 1
optical force clamp, it became possible to observe preciselgnd 2. The free energy of the motor at stavéth the center
the motion of single motors along filaments while maintain-of mass at positionx is described by the periodic and asym-
ing the constant load on them. An analysis of records ofnetric potentialW;(x). Introducing the probability density
kinesin motion under variable ATP concentrations and load®;(x,t) for the motor to be at positior at timet in statei,
indicates that the kinetics of ATP hydrolysis can be describedhe Fokker-Planck equations describing the evolution of the
by the Michaelis-Menten mechanism, systems are
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FIG. 1. Aratchet potentialV, and diffusive state potentidV,. ] 4
The parameters are set ta/L=0.1, the maximum ofW; Ly
=10kgT, W,=12kgT. §=0.05 in model(a), §=0.3 in model(b), 06 2000  aoad  eodd Boad’
and =1 in model(c). Y
9tP1+0xJ1= — 01(X)P1+ w2(X) Py, 2 (b) “] oo eeeo0
5] /
i F.-ﬂ
hPo+dxd2=+ w1(X)P1— wa(X) Py, () 20} ,/""/
wherew [ w,(x)] is the transition rate from the statgstate % * P l./_,,-- B
2) to state 2(state ). The current density resulting from g 20+ ,/fi:,/” —0— E,=0
diffusion, interaction with the microtubule, and an external 5 _',.,.;'f{ —0— E,=-1
load F,; are given by { <7 & F
10 . »
D, 5.
Ji:kB_T[Pi(th)&xWi_Pi(xat)Fext+ kBT&XPi(X,t)], T
4
(c) 4000
whereD; is a diffusion constant in each state1,2. In a 1
two-state model, the chemical reaction cycle can be de- 350"
scribed by introducing the forward and backward ratgs s‘m,_'
and «, for the combined process of ATP binding and hy- ]
drolysis K, 280"
1 2.0x10"
M +ATP=M-ADP-P, (5) .
ay 1.8x10" -
and the rateg3; and B, describing the process of product 1.0+
release and binding: 00 05 10 1§ 20 2§ 80
B
ay
M+ ADP+P=M-ADP-P, (6) FIG. 2. Simulation results for model Aa) Rate of ATP con-
a sumption as a function aj=e***eT. (b) The maximum rate

) for Fe=0,—1,—3,—5. () Michaelis-Menten constank,, for
whereM refers to the motor protein. The subsequent transif, =0,—1,-3,—5.

tions @, and B, complete the chemical reaction cycle. The
stateM-ADP-P will be called the “free’ state,” or state 2 B
corresponding to that in which the motor head is detached _1:e(WrWz)/kBT, 8)
from the microtubule after binding and dissociating ATP. All B
other states in the reaction cycle will be called ‘bound’ state
or state 1, corresponding to that in which the motor is atwhere the chemical driving force
tached to the microtubule.
We suppose that state 2 is strictly diffusive so that poten- _
tial W,(x) is flat as shown in Fig. IW;(x) is the standard AW=paTP™ HADPT P ©
ratchet potential as shown in Fig. 1.
Detailed balance of each of the chemical reaction impliesThen the transition rates in the Fokker-Planck equation be-
come

DL Wi Wot ap)/kgT, @)

@2 @1(X) = a1(X) + B1(X),w2(X) = az(X) + Bo(X).  (10)
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2+ Since the release of products is just a thermal transition, we
1. assume thap,(x) = w=const as in Ref[15]. It is known
that chemical reactions such as the ATP-binding step are re-
0- stricted to occur within an active site of conformation space
0'0 0'5 1.0 15 20 25 3'0 corresponding to the potential minimuf@0]. To take into
— account this concept of active site, we define
D,
_ _ AT o for L(1-8)<x<L
FIG. 3. (a) Velocity curves as a function ofj=e>**8" for ay(X)~ ) (16)
model A whenF,=0. (b) Maximum velocity as a function d, 0 otherwise.

for 0<D;<3 with AD;=0.1. Shown in the inset is the velocity

= We studied the case in whichb=0.05, 0.3, 1. We call the
curve measured witAD,=0.02

corresponding models as model B, andC, respectively.

If we maintain the constant external load, we can look for a
stationary solution. Then the average velocity and the rate of IIl. SIMULATION RESULTS

ATP consumption become We now rescale the above equations into a dimensionless

L form by settingx=x/L, t=t/(L%/D,), W,—W,/KgT, Fex
v=f [J1(X) +Ja(x) ]dX, (11
0
F,..
L 501 o —e— stall force
I’=f [alpl_azpz]dx. (12) 1 \
0 5.5
°
As a result of the broken detailed balancé+*0) and
asymmetry of the potential, the motor can acquire nonzerc 6.0
average velocity and can work mechanically against a load.
In the presence of an external forEg,;, the system can 6.5+ °
perform mechanical work. The work performed per unit time 1
against the external force is 7.0
()
W= —F exv. (19 25 T
The chemical energy consumed per unit time is given by o s 20 25 20
O=rApu. (14 D,
We can now define the efficiency of energy transduction FIG. 5. Stall force for modeR increases withD;.
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FIG. 6. (a) Maximum velocity of modeB as a function 01131
for 0<D;<3 with AD;=0.1. Shown in the inset is the velocity
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curve measured with51:0.02. (b) Rate curves for modeB. (c)

Michaelis-Menten constank,, for model B when Fg,=0,—1,

-3,-5.

=Feul/kgT, and w;=w;L%D,. Then the Fokker-Planck
equations for a rescaled probabil®(x)=LP;(x) become

P,

— =D P1(X%, D) Wi — Py (X, 1) F eyt P 1(X,1)]

ot

=- 51(;)514' 52(;)32 ;

P,

Il P2(X, 1) W, — Po(X, 1) F gt 3P (X, 1)]

= a1(;)51 - ;2(;)52 )

7

(18
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FIG. 7. Efficiency of modeB as a function ofd; for Fe.=
-1,-3,-5.

whereD,;=D;/D,. If we maintain constant external force,
the system goes to a steady state witl?;=0. We have
obtained the steady state solutions of E(fs/) and (18)
when we apply an external forde,,; and chemical driving

force Au for a given parameter value @f,. We now per-
form numerical simulations on a one-dimensional lattice, us-
ing the forward time centered scheme with ADI operator
method[16]. The equations are discretized wittx=0.001

and time intervalAt=0.000001. We start with an initial
random probability densitf?;(x,0) and then numerically in-
tegrate Eqs(17) and(18). At a time step of 16 the density
goes to a constant value and we get a stationary solution. In
our study, we set the transition rate toL?/D,=50. In
modelA, the active site is localized to the potential minimum
such that the ATP assisted transition can only occur for

0.95<x<1. In modelB, the ATP assisted transition occurs

for 0.7<x<1. To fully investigate the localization effect of
the active site, we studied mod€| wherea, in Eq. (16) is

(velocity) D,

b
»n

FIG. 8. Force-velocity curve of modd as a function ofF 4
whenD,;=1, 1.5, 2.0, 2.5, and 3.0.
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g o F.-0
204 —O0— F,=-1 = M'mad 20
""'.'"_ _ﬂ =-3 KM + q ! ( )
164 o] - T? =-S ) . ) . .
= obeying Michaelis-Menten law witlg replaced with ATP
10— r r T r r concentration. Figure(2) shows Michaelis-Menten constant
0.0 a5 1.0 15 20 25 30 A ) I
B, Ky obtained from Eq(20). We find that the value ,, is
—_ weakly dependent on the applied force.

(C) Figure 3a) shows simulation results for the velocity for
azu0’ . model A as a function ofg, which shows that velocity ap-
o proaches a maximum value @t

Shown in Fig. 8b) is the maximum velocity profile for
210’ o modelA at the saturating ATP concentration feg,~=0. We
s ] , '.___.-" e find that the velocity profile changes very sensitively as we
“’f e —0— E.=0 change the value dd; with AD;=0.1, in contrast with the
2act’y - —O0— E,.=-1 rate curve shown in Fig. (B). To further investigate this
] ~—®- F, =3 aspect, we obtained the velocity profile as we changed the
"""" B Ee=-5 value of D; at a discrete step akD;=0.02, shown in the
20wt +—————— o oo g y inset of Fig. 3b). We find that the velocity profile depends
B more sensitively on the value @f;.

If we try to fit the velocity by a Michaelis-Menten equa-

FIG. 9. (a) Maximum velocity of modelC whenF.,=0 as a
function of D, for 0<D,<3 with AD,=0.1. Shown in the inset is

the velocity curve measured withD ;= 0.02 (b) Simulation results
for the ATP consumption rate for modél. (c) Michaelis-Menten

constant,, for modelC whenEexF 0,-1,-3,-5.

tion of the form Eq.(1), we obtain a value oKy, which
differs from that obtained though E¢(R0). FurthermoreK,
becomes a very sensitive function Bf, similar to that of
the velocity shown in Fig. @). Instead we apply a modified
Michaelis-Menten law

_ al'mad B

constant for allk (6=1). Figure 2a) shows the rate of ATP = Tq
M

consumption curves plotted in terms of

B. (21)

Then we obtain the same identical value of Michaelis-
Menten constant as that obtained from the rate curve shown
in Fig. 2(b). Similar to the case oD, =1 [14], positive val-
ues of B indicate that we have a nonzero ATP consumption
even under the stall conditiorv €0). Figure 4 shows the
the Saturating ATP Concentration as a functionm for efﬁciency curves fOI’ the diﬁ:erent Va|ueS Of eXterI’la| |Oad
various values of external load. calculated from Eq(15) We find that the efﬁCienCW is

We find that the rate of ATP consumption can be fittedvery low and goes to zero 43, becomes larger than 2. We
into the form note that the stall force increase monotonically with increas-

g=exp(Au/kgT) (19

for various values ob 1. Figure Zb) shows the value of at
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ing D, for small Foy, but the increment decreases for a WO States are different. Our study extends the work done by
larger value off ., (see Fig. 5 Lattanzi and Maritaf14], in v_vhlc_:h thg forqe—ve_locny rela-

In order to u%xderstand the active site effect on the A_I_Ptlons of a two-state model with identical d|ﬁgSlon constants

. S ) are studied. In model, where the ATP assisted transition
aSS|sted_tranS|t|on, we study modgl where 5, is nonzero can only occur in a very localized “active site” near the
for 0.7<x<1. Figures €a), 6(b), and Gc) show the velocity, minimum of potential between the motor and microtubule,
the rate, and the Michaelis-Menten constant as a function Qfe find that the value of the velocity depends very sensi-
D, for various values of .. We find that the Michaelis- tively on the value of diffusion constants. By providing a
Menten constant becomes smaller for a larger external loachodified Michaelis-law, we obtain a unique value of the
in contrast to the case of model A. As shown in Figh)ewe  Michaelis-Menten constant from both the velocity and rate
note that the maximum velocity also depends sensitively omonsumption curve, which increases with increasing the ex-
the value oD, like the modelA. The efficiency curve in Fig. ternal load. Experimental findinfl3] that the Michaelis-
7 shows the efficiency is maximum whé, =1 and in- Menten constanky, increases with increasing external load

creases as we increase the external load. We note that the rfee™Ms to indicate that the active site model is an appropriate

of ATP consumption is smaller and the efficiency becomednodel to describe bialogical motor protein. .
larger rather sharply compared with those of modeFigure By studying models where the ATP assisted transition can

8 sh the f locit ¢ . lueaf occur in a wide region such as modgland C, we find that
shows the force-velocity curves for various valuedg the Michaelis-Menten constant decreases as the external load

We find thaE the overall slope of the curve decreases with thfhcreases, contrastingly with the active site motieln “de-
increase oD;. localized” models, we find that the motor becomes most ef-
In modelC, we studied the case in which the ATP aSSiStedfective and acquires the maximum Ve|ocity when the diffu-
transition can occur at all sites with the same rate=w  sjon constants in both states are same. The efficiency of the
(6=1). Figures a), 9(b), and 9c) show the velocity, the model is greatly enhanced in the“delocalized model” so that
rate, and the Michaelis-Menten constant as a functiob pf it ranges around 30%, which is much larger than that of
for various values of ;. We find that Michaelis-Menten biological motors.
constant decreases as we increase the external load similarly Through our study, we find that this modified Michaelis-
to the case of modeB. Menten law can be used to explain the velocity curve of a
However, the velocity varies rather smoothly as a functiontwo-state ratchet model with different diffusion constants in
of D, as shown in Fig. @), in contrast to those of modal ~ €ach of two states. When the ratio of diffusion constants
and B. The efficiency curve in Fig. 10 clearly shows that €xceeds 2, the rate of ATP consumption, the velocity of the
efficiency becomes maximum f@,=1. We note that the motor, and the Michaelis-Menten constant become indepen-

_ i ~ dent of the ratio of diffusion constant. Our study can be used
stall force also increases as we increlse in designing an artificial motor protein.
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