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Modified Michaelis law in a two-state ratchet model for a molecular motor
as a function of diffusion constant

Hye Young Moon and Youngah Park
Department of Physics, Myongji University, Yongin 449-728, Korea

~Received 27 November 2002; published 21 May 2003!

We study transport properties and energetics of ratchets, which are driven by a chemical reaction between
two states with different diffusion constants. We find that velocity curves show very sensitive dependence on
the ratio of diffusion constants, whereas the rate of Adenosinetriphosphate~ATP! consumption curves depends
smoothly on it. Modified Michaelis-Menten law shows us that identical values of Michaelis-Menten constant
KM can be obtained independently from both curves. We obtain force-velocity curves for different values of a
ratio of diffusion constants. We find that the Michaelis-Menten constant increases with the increasing external
load for the ‘‘active site’’ model where the ATP assisted transition occurs at the localized region near the
minimum of the ratchet potential, whereas it decreases with the increasing load for the ‘‘delocalized model.’’
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I. INTRODUCTION

One of the essential features of biological systems is
they can transduce chemical energy into mechanical mo
and work on a molecule scale. Important examples
muscle contraction, transport of materials and vesicles,
mobility, and cell mitosis. Recent studies have shown t
these motions and forces are generated on a molecular
by motor proteins that are driven by chemical reactions c
suming ATP~Adenosinetriphosphate! in a far from equilib-
rium situation.

Linear motor proteins move along complex period
structures called filaments, which are obtained by the po
merization of identical monomers~actin filaments! or dimers
~microtubules!. An important feature is their polarity, whic
originates from the asymmetry of monomers forming a po
structure with two different ends denoted by ‘‘plus end’’ a
‘‘minus end.’’ So far three different families of motor pro
teins have been identified: kinesins moving along micro
bules are responsible for transport of organelles, myo
moving along actin filaments are responsible for muscle c
traction, and dyneins are involved in cellular locomotio
Kinesins and myosins move toward the plus end, wher
dyneins move toward the minus end@1,2#.

Several models have been studied to explain how
chemical energy of ATP is transduced into unidirectional m
tion of motor proteins@2–9#. A thermal ratchet models is on
of the extensively studied models explaining the motion
motor proteins@4,5,10#. In a thermal ratchet model a moto
protein diffuses as a Brownian particle in a several period
ratchetlike potential that is alternatively switched on and
in a stochastic way.

The role of the external load in the kinetics of mot
proteins is of interest@11,12#. With the development of an
optical force clamp, it became possible to observe precis
the motion of single motors along filaments while mainta
ing the constant load on them. An analysis of records
kinesin motion under variable ATP concentrations and lo
indicates that the kinetics of ATP hydrolysis can be descri
by the Michaelis-Menten mechanism,
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vmax@ATP#

KM1@ATP#
. ~1!

Here @ATP# is the concentration of ATP,vmax is the velocity
at saturating ATP, andKM is mechanochemical Michaelis
Menten constant@12#. However recent experiment on
single kinesin motor revealed some puzzling results:
creased loads reduce the maximum velocity as expected
raise the apparent Michaelis-Menten constant by a factor
when the external load increases five times@13#. Lattanzi and
Maritan provide a modified Michaelis-Menten law to expla
the puzzling data within the framework of coarse grain
two-state ratchet models@14#.

In this paper, we generalize a model introduced by L
tanzi and Maritan and study force-velocity relations in a ge
eral two-state ratchet model in which diffusion constants
each of the two states are different. By obtaining t
Michaelis-Menten curve for various values of the ratios
diffusion constants, we find that an increase in Michae
constant for increased loads is a property of the two-s
ratchet model where ATP-hydrolysis transition occurs only
an ‘‘active site’’ and explain the obtained data using t
modified Michaelis-Menten law. We find that in the mod
where the transitions are ‘‘delocalized,’’ the Michaeli
Menten constant decreases with increasing load. In Sec
the two-state ratchet model will be introduced. Simulati
results will be provided in Sec. III. We discuss our result
the final section.

II. TWO-STATE RATCHET MODEL

We now describe a two-state ratchet model for force g
eration and motion of a liner motor@5#, in which ATP con-
sumption triggers a conformational change between stat
and 2. The free energy of the motor at statei with the center
of mass at positionx is described by the periodic and asym
metric potentialWi(x). Introducing the probability density
Pi(x,t) for the motor to be at positionx at time t in statei,
the Fokker-Planck equations describing the evolution of
systems are
©2003 The American Physical Society18-1
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] tP11]xJ152v1~x!P11v2~x!P2 , ~2!

] tP21]xJ251v1~x!P12v2~x!P2 , ~3!

wherev1@v2(x)# is the transition rate from the state 1~state
2! to state 2~state 1!. The current density resulting from
diffusion, interaction with the microtubule, and an extern
load Fext are given by

Ji5
Di

kBT
@Pi~x,t !]xWi2Pi~x,t !Fext1kBT]xPi~x,t !#,

~4!

whereDi is a diffusion constant in each statei 51,2. In a
two-state model, the chemical reaction cycle can be
scribed by introducing the forward and backward ratesa1
and a2 for the combined process of ATP binding and h
drolysis

M1ATP

a1

a1

M -ADP-P, ~5!

and the ratesb1 and b2 describing the process of produ
release and binding:

M1ADP1P

a1

a1

M -ADP-P, ~6!

whereM refers to the motor protein. The subsequent tran
tions a1 and b2 complete the chemical reaction cycle. Th
stateM -ADP-P will be called the ‘‘free’ state,’’ or state 2
corresponding to that in which the motor head is detac
from the microtubule after binding and dissociating ATP. A
other states in the reaction cycle will be called ‘bound’ st
or state 1, corresponding to that in which the motor is
tached to the microtubule.

We suppose that state 2 is strictly diffusive so that pot
tial W2(x) is flat as shown in Fig. 1.W1(x) is the standard
ratchet potential as shown in Fig. 1.

Detailed balance of each of the chemical reaction imp

a1

a2
5e(W12W21Dm)/kBT, ~7!

FIG. 1. A ratchet potentialW1 and diffusive state potentialW2.
The parameters are set toa/L50.1, the maximum of W1

510kBT, W2512kBT. d50.05 in model~a!, d50.3 in model~b!,
andd51 in model~c!.
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b1

b2
5e(W12W2)/kBT, ~8!

where the chemical driving force

Dm[mATP2mADP2mP . ~9!

Then the transition rates in the Fokker-Planck equation
come

v1~x!5a1~x!1b1~x!,v2~x!5a2~x!1b2~x!. ~10!

FIG. 2. Simulation results for model A.~a! Rate of ATP con-
sumption as a function ofq5eDm/kBT. ~b! The maximum rater max

for Fext50,21,23,25. ~c! Michaelis-Menten constantKM for
Fext50,21,23,25.
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If we maintain the constant external load, we can look fo
stationary solution. Then the average velocity and the rat
ATP consumption become

v5E
0

L

@J1~x!1J2~x!#dx, ~11!

r 5E
0

L

@a1P12a2P2#dx. ~12!

As a result of the broken detailed balance (DmÞ0) and
asymmetry of the potential, the motor can acquire nonz
average velocity and can work mechanically against a lo

In the presence of an external forceFext, the system can
perform mechanical work. The work performed per unit tim
against the external force is

W52Fextv. ~13!

The chemical energy consumed per unit time is given by

Q5rDm. ~14!

We can now define the efficiency of energy transduction

FIG. 3. ~a! Velocity curves as a function ofq5eDm/kBT for

modelA whenFext50. ~b! Maximum velocity as a function ofD̃1

for 0,D̃1,3 with DD̃150.1. Shown in the inset is the velocit

curve measured withDD̃150.02
05191
a
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h52
Fextv
rDm

. ~15!

Since the release of products is just a thermal transition,
assume thatb2(x)5v5const as in Ref.@15#. It is known
that chemical reactions such as the ATP-binding step are
stricted to occur within an active site of conformation spa
corresponding to the potential minimum@10#. To take into
account this concept of active site, we define

a2~x!;H v for L~12d!,x,L

0 otherwise.
~16!

We studied the case in whichd50.05, 0.3, 1. We call the
corresponding models as modelA, B, andC, respectively.

III. SIMULATION RESULTS

We now rescale the above equations into a dimension
form by settingx̄5x/L, t̄ 5t/(L2/D2), W̄i→Wi /kBT, F̄ext

FIG. 4. Efficiency of modelA as a function ofD̃1 for Fext5
21,23,25.

FIG. 5. Stall force for modelA increases withD̃1.
8-3
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5FextL/kBT, and v̄ i5v iL
2/D2. Then the Fokker-Planck

equations for a rescaled probabilityP̄i( x̄)5LPi(x) become

] P̄1

] t̄
2D̃1] x̄@ P̄1~ x̄, t̄ !] x̄W̄i2 P̄1~ x̄, t̄ !F̄ext1] x̄P̄1~ x̄, t̄ !#

52v̄1~ x̄!P̄11v̄2~ x̄!P̄2 , ~17!

] P̄2

] t̄
2] x̄@ P̄2~ x̄, t̄ !] x̄W̄i2 P̄2~ x̄,t !F̄ext1] x̄P̄2~ x̄, t̄ !#

5v̄1~ x̄!P̄12v̄2~ x̄!P̄2 , ~18!

FIG. 6. ~a! Maximum velocity of modelB as a function ofD̃1

for 0,D̃1,3 with DD̃150.1. Shown in the inset is the velocit

curve measured withDD̃150.02. ~b! Rate curves for modelB. ~c!

Michaelis-Menten constantKM for model B when F̄ext50,21,
23,25.
05191
whereD̃15D1 /D2. If we maintain constant external force
the system goes to a steady state with]tPi50. We have
obtained the steady state solutions of Eqs.~17! and ~18!
when we apply an external forceFext and chemical driving
force Dm for a given parameter value ofD̃1. We now per-
form numerical simulations on a one-dimensional lattice,
ing the forward time centered scheme with ADI opera
method@16#. The equations are discretized withDx50.001
and time intervalD t̄ 50.000 001. We start with an initia
random probability densityPi(x,0) and then numerically in-
tegrate Eqs.~17! and~18!. At a time step of 106, the density
goes to a constant value and we get a stationary solution
our study, we set the transition rate tovL2/D2550. In
modelA, the active site is localized to the potential minimu
such that the ATP assisted transition can only occur
0.95, x̄,1. In modelB, the ATP assisted transition occu
for 0.7, x̄,1. To fully investigate the localization effect o
the active site, we studied modelC, wherea2 in Eq. ~16! is

FIG. 7. Efficiency of modelB as a function ofD̃1 for F̄ext5
21,23,25.

FIG. 8. Force-velocity curve of modelB as a function ofF̄ext

whenD̃151, 1.5, 2.0, 2.5, and 3.0.
8-4
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constant for allx̄ (d51). Figure 2~a! shows the rate of ATP
consumption curves plotted in terms of

q5exp~Dm/kBT! ~19!

for various values ofD̃1. Figure 2~b! shows the value ofr at
the saturating ATP concentration as a function ofD̃1 for
various values of external load.

We find that the rate of ATP consumption can be fitt
into the form

FIG. 9. ~a! Maximum velocity of modelC when Fext50 as a

function ofD̃1 for 0,D̃1,3 with DD̃150.1. Shown in the inset is

the velocity curve measured withDD̃150.02~b! Simulation results
for the ATP consumption rate for modelC. ~c! Michaelis-Menten

constantKM for modelC when F̄ext50,21,23,25.
05191
r 5
r maxq

KM1q
, ~20!

obeying Michaelis-Menten law withq replaced with ATP
concentration. Figure 2~c! shows Michaelis-Menten constan
KM obtained from Eq.~20!. We find that the valuer max is
weakly dependent on the applied force.

Figure 3~a! shows simulation results for the velocity fo
model A as a function ofq, which shows that velocity ap
proaches a maximum value atq→`

Shown in Fig. 3~b! is the maximum velocity profile for
modelA at the saturating ATP concentration forFext50. We
find that the velocity profile changes very sensitively as
change the value ofD̃1 with DD̃150.1, in contrast with the
rate curve shown in Fig. 2~b!. To further investigate this
aspect, we obtained the velocity profile as we changed
value of D̃1 at a discrete step ofDD̃150.02, shown in the
inset of Fig. 3~b!. We find that the velocity profile depend
more sensitively on the value ofD̃1.

If we try to fit the velocity by a Michaelis-Menten equa
tion of the form Eq.~1!, we obtain a value ofKM , which
differs from that obtained though Eq.~20!. Furthermore,KM

becomes a very sensitive function ofD̃1, similar to that of
the velocity shown in Fig. 3~b!. Instead we apply a modified
Michaelis-Menten law

v5
ar maxq

KM1q
2b. ~21!

Then we obtain the same identical value of Michael
Menten constant as that obtained from the rate curve sh
in Fig. 2~b!. Similar to the case ofD̃151 @14#, positive val-
ues ofb indicate that we have a nonzero ATP consumpt
even under the stall condition (v50). Figure 4 shows the
efficiency curves for the different values of external lo
calculated from Eq.~15!. We find that the efficiencyh is
very low and goes to zero asD̃1 becomes larger than 2. W
note that the stall force increase monotonically with incre

FIG. 10. The efficiency of modelC as a function ofD̃1 for

F̄ext521,23,25.
8-5
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ing D̃1 for small Fext, but the increment decreases for
larger value ofFext ~see Fig. 5!.

In order to understand the active site effect on the A
assisted transition, we study modelB, whereb2 is nonzero
for 0.7, x̄,1. Figures 6~a!, 6~b!, and 6~c! show the velocity,
the rate, and the Michaelis-Menten constant as a functio
D̃1 for various values ofFext. We find that the Michaelis-
Menten constant becomes smaller for a larger external
in contrast to the case of model A. As shown in Fig. 6~b!, we
note that the maximum velocity also depends sensitively
the value ofD̃1 like the modelA. The efficiency curve in Fig.
7 shows the efficiency is maximum whenD̃151 and in-
creases as we increase the external load. We note that th
of ATP consumption is smaller and the efficiency becom
larger rather sharply compared with those of modelA. Figure
8 shows the force-velocity curves for various values ofD̃1.
We find that the overall slope of the curve decreases with
increase ofD̃1.

In modelC, we studied the case in which the ATP assis
transition can occur at all sites with the same ratea25v
(d51). Figures 9~a!, 9~b!, and 9~c! show the velocity, the
rate, and the Michaelis-Menten constant as a function ofD̃1
for various values ofFext. We find that Michaelis-Menten
constant decreases as we increase the external load sim
to the case of modelB.

However, the velocity varies rather smoothly as a funct
of D̃1 as shown in Fig. 9~a!, in contrast to those of modelA
and B. The efficiency curve in Fig. 10 clearly shows th
efficiency becomes maximum forD̃151. We note that the
stall force also increases as we increaseD̃1.

IV. DISCUSSION

In this paper, we studied a linear molecular motor usin
two state ratchet model where diffusion constants of eac
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two states are different. Our study extends the work done
Lattanzi and Maritan@14#, in which the force-velocity rela-
tions of a two-state model with identical diffusion constan
are studied. In modelA, where the ATP assisted transitio
can only occur in a very localized ‘‘active site’’ near th
minimum of potential between the motor and microtubu
we find that the value of the velocity depends very sen
tively on the value of diffusion constants. By providing
modified Michaelis-law, we obtain a unique value of th
Michaelis-Menten constant from both the velocity and ra
consumption curve, which increases with increasing the
ternal load. Experimental finding@13# that the Michaelis-
Menten constantKM increases with increasing external loa
seems to indicate that the active site model is an approp
model to describe biological motor protein.

By studying models where the ATP assisted transition
occur in a wide region such as modelB andC, we find that
the Michaelis-Menten constant decreases as the external
increases, contrastingly with the active site modelA. In ‘‘de-
localized’’ models, we find that the motor becomes most
fective and acquires the maximum velocity when the dif
sion constants in both states are same. The efficiency of
model is greatly enhanced in the‘‘delocalized model’’ so th
it ranges around 30%, which is much larger than that
biological motors.

Through our study, we find that this modified Michaeli
Menten law can be used to explain the velocity curve o
two-state ratchet model with different diffusion constants
each of two states. When the ratio of diffusion consta
exceeds 2, the rate of ATP consumption, the velocity of
motor, and the Michaelis-Menten constant become indep
dent of the ratio of diffusion constant. Our study can be us
in designing an artificial motor protein.
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